Error Handling in R


R Data Science: R Programming A-Z: R For Data Science With Real Exercises!

In R, we can handle errors with try() and inherits(object-name,'try-error').
mtry <- try(tuneRF(dt[, -3], dat3[,3], ntreeTry=100, stepFactor=1.5,improve=0.01))
if (!inherits(mtry, "try-error")) {
best.m <- mtry[mtry[, 2] == min(mtry[, 2]), 1]
rf <- randomForest(ID~.,data=dt, mtry=best.m, importance=TRUE, ntree=1000)
} else {
rf <- randomForest(ID~.,data=dt, importance=TRUE, ntree=1000)
}
Coursera Data Science

R Tutorials : 75 Free R Tutorials

Get Free Email Updates :
*Please confirm your email address by clicking on the link sent to your Email*

Related Posts:

0 Response to "Error Handling in R"

Post a Comment

Next → ← Prev