Best Poisson Distribution Calculator

A Poisson distribution is defined as how many times an event occurs within x fixed interval. Interval can be minutes, hours, days or any unit of time. Not just time - it can be any interval - for example the number of misspellings in a page.

Solution

P(X < ) means probability of less than occurences. Similarly P(X > ) refers to probability of more than occurences.
Poisson Distribution Table

Probabilities of exactly N occurences from 0 through are shown below.

Examples

See below some practical examples of poisson distribution in real life

  • Arrivals at a bus stop: If buses arrive at a bus stop at an average rate of 3 buses per hour, the Poisson distribution can be used to calculate the probability of a specific number of arrivals in the next hour, such as the probability of exactly 5 buses arriving. λ=3 represents the average rate of arrivals.
  • Website traffic: If a website receives an average of 1000 visitors per day, the Poisson distribution can be used to calculate the probability of a certain number of visitors on a specific day, such as the probability of 1200 visitors. λ=1000 represents the average number of visitors.
  • Defects in a product: If a factory produces light bulbs and the average number of defects is 2 per batch of 100 bulbs, the Poisson distribution can be used to calculate the probability of a specific number of defects in a batch, such as the probability of exactly 1 defect. λ=2 represents the average number of defects per batch.
  • Accidents: If the average number of car accidents at a particular intersection is 0.5 per day, the Poisson distribution can be used to calculate the probability of a specific number of accidents in the next day, such as the probability of no accidents. λ=0.5 represents the average number of accidents per day.
  • Call centre : Customer care executive gets three phone calls every 15 mins. What is the probability that he/she would get more than 5 calls in the next 30 minutes? Given the average rate of success is 3 calls for every 15 minutes. Therefore, average rate of success (λ) for our problem statement which is to calculate for 30 minutes would be 3 x (30/15) = 6. Number of occurences (x) is 5. It is also called Poisson random variable.

Important Points
  • Average rate of success (λ) must be greater than or equal to 0.
  • Poisson random variable must be a whole number, can't be in decimals.
  • Poisson random variable can't be less than zero.
Properties of poisson distribution
Poisson Distribution has the following properties -
  • Average rate of success must be already known.
  • Probability of a single occurence is proportional to the size of the interval.
  • Probability of more than one occurence within a very short interval is small.
Spread the Word!
Share
Looks like you are using an ad blocker!

To continue reading you need to turnoff adblocker and refresh the page. We rely on advertising to help fund our site. Please whitelist us if you enjoy our content.