In R, you can extract numeric columns from a data frame using various methods.

Let's create a sample data frame called `mydata`

having 3 variables (name, age, height).

# Create a sample data frame mydata <- data.frame( name = c("Alice", "Bob", "Charlie"), age = c(25, 30, 28), height = c(165.5, 180.0, 172.3) )

## How to Extract all Numeric Variables in R

In the dataframe named "mydata", we have two numeric columns "age" and "height". When we have multiple variables in a dataframe, we don't know the name of the numeric columns in advance.

Base R

numeric_columns <- mydata[sapply(mydata, is.numeric)] print(numeric_columns)

In **base R**, you can extract multiple numeric columns (variables) using `sapply`

function. The sapply function is a part of apply family of functions. They perform multiple iterations (loops) in R.

In **dplyr** package, the `select_if`

function is used to select columns based on a condition. In this case, `is.numeric`

selects only the numeric columns.

dplyr

library(dplyr) # Select numeric columns using select_if() numeric_columns <- mydata %>% select_if(is.numeric) print(numeric_columns)

## Extracting Numeric Variables with No Missing Values in R

Let's say you want to keep numeric columns that have no missing values in R.

# Create a sample data frame mydata <- data.frame( name = c("Alice", "Bob", "Charlie", "Dave"), age = c(25, 30, 28, NA), height = c(165.5, 180.0, 172.3, 189), weight = c(NA, NA, 72, 74) )

Base R

numeric_cols <- sapply(mydata, is.numeric) numeric_no_missing <- colSums(is.na(mydata[numeric_cols])) == 0 numeric_no_missing_cols <- mydata[numeric_cols] [numeric_no_missing]

Let's see how the code works:

`numeric_cols <- sapply(mydata, is.numeric)`

returns TRUE for numeric columns, otherwise FALSE in the dataframe.`numeric_no_missing <- colSums(is.na(mydata[numeric_cols])) == 0`

returns numeric columns with no missing values.`numeric_no_missing_cols <- mydata[numeric_cols][numeric_no_missing]`

selects numeric columns with no missing values into a new dataframe.

dplyr

library(dplyr) numeric_no_missing_cols <- mydata %>% select(where(is.numeric)) %>% select(where(~ all(!is.na(.))))

If you want to keep columns that have no missing values, you can use the **select()** function with **where()** in dplyr. **select(where(is.numeric))** selects only the numeric columns. **select(where(~ all(!is.na(.))))** selects columns where all values are not missing (NA).

Share Share Tweet